王凯平,女,1969年生。教授,博士硕士生导师。1991年同济医科大学药学院药学本科毕业留校任教至今,期间于1997年获药物化学硕士学位,2007年获药理学博士学位。
研究方向:
药物制剂及其生物效应
天然多糖活性物质及其作用机制
天然多糖肝靶向作用及肝靶向载体的可行性研究
天然多糖的体内药代动力学研究
研究及获奖情况:
近10年来主持国家自然基金课题6项,中国医疗手牵手工程1项,省技术创新专项重大项目1项,省自然基金重点项目2项,省科技攻关计划3项,省支撑计划1项,省自然科学基金2项,省中医药中西医结合科研课题1项,武汉市科技计划1项,武汉市知识创新专项1项,市攻关计划2项,校基金5项;横向课题14项;经费共计2000多万元;以第一作者和通讯作者在Journal of Controlled Release,Carbohydrate Polymers,Cancer Letters等权威期刊上发表SCI论文80余篇,其中top论文61篇,参编教材2本。已获授权专利6项。以第一负责人完成的项目《当归多糖铁复合物治疗铁代谢障碍性贫血的研究》获湖北省科技进步二等奖,以第二负责人完成的项目《香菇多糖代谢及抗肿瘤相关技术创新与应用》获得湖北省科技进步一等奖。
一、科研项目:
1.不同结构天然多糖的不同放射性同位素标记及标记物体内示踪应用验证研究。华中科技大学交叉研究支持计划项目,2023.1-2025.12, 150万,第一负责人。
2.天然多糖核素标记及示踪其肝脏代谢的关键技术研究。国基金联合资助项目(重点),23.12-27.12,第二负责人。
3.猪苓多糖对非酒精性脂肪肝的药效学考察。民用横向项目(技术开发),2023.11-2025.05, 40万,第一负责人。
4.异麦芽糖酐铁药代动力学(铁代谢)。民用横向项目(技术服务),2022.06-2024.03,68万,第一负责人。
5.endo-β-1,4-mannanase和MR介导的铁皮石斛多糖胃肠道药代动力学机制研究。中国光华科技基金会,2022.5-2025.5, 100万,第一负责人。
6.异麦芽糖酐铁药代动力学(铁代谢)。横向课题,2022.6.20-2023.6.19,40万,第一负责人。
7.JSBDT药代动力学预研。横向课题,2022.3.8-2023.1.7,60万,第一负责人。
8.endo-β-1,4-mannanase和MR介导的铁皮石斛多糖胃肠道药代动力学机制研究。武汉市科技局基础研究项目,2022.6-2024.6,20万,第一负责人。
9.endo-β-1,4-mannanase和MR介导的铁皮石斛多糖胃肠道药代动力学机制研究。国家自然科学基金,2021.1.1-2024.12.31,56万,第一负责人。
10.双氯芬酸钠缓释栓剂变更药品规格的研究。横向课题,2020.9-2022.3,40万,第一负责人。
11.Dectin-1介导的香菇多糖体内吸收代谢机制研究。国家自然科学基金,2020.01-2023.12,55万,第二负责人。
12.Dectin-1介导的香菇多糖体内吸收代谢机制研究。中国医疗手牵手工程。2020.1-2023.12,100万,第一负责人。
13.天然多糖体内检测方法的建立和药代动力学机制研究。省自然基金重点项目,500万,第一负责人。
14.中药复方多糖提取工艺及降糖降脂功效研究。横向课题。2018.06-2020.06,第一负责人。
15.生血宁片通过调节EPO表达改善肾性贫血的作用及分子机制研究。横向课题,2018.03-2019.09,第一负责人。
16.中药复方多糖提取工艺、降糖降脂功效及新剂型的关键技术研究。湖北省技术创新专项重大项目。2017.01-2018.12,第一负责人。
17.当归多糖调节机体糖脂代谢紊乱的分子机制研究。武汉市科技计划,2016.08-2018.08,第一负责人。
18.药用植物多糖的绿色提取工艺、结构鉴定及新剂型的关键技术研发。湖北省科技支撑计划项目2014BKB088, 2014.1-2015.12,第一负责人。
19.香菇多糖抗肿瘤构效关系及诱导肿瘤细胞凋亡的分子机制研究。国家自然科学基金, 2014.01-2017.12,第二负责人。
20.香菇多糖非免疫途径抗肿瘤作用的分子机制研究。武汉市科技攻关, 2013.01-2014.12,第一负责人。
21.当归多糖作为铁调素抑制剂参与机体铁代谢的分子机制研究。国家自然科学基金,2013.01-2016.12,第一负责人。
22.香菇多糖药用研究。横向课题, 2011.06-2013.06,第一负责人。
23.当归多糖特异性肝靶向的分子机理研究。国家自然科学基金,2011.01-2013.12,第一负责人。
24.当归多糖作为肝靶向给药系统载体的可行性研究。华中科技大学自然重点项目,2010.10-2012.09,第一负责人。
25.当归多糖抑制hepcidin表达的分子机制研究。国家自然科学基金,2010.01-2010.12,第一负责人。
26.湖北道地植物多糖及其铁复合物开放铁释放通道调节铁代谢的作用研究。省自然基金重点项目。2008.10-2011.09,第一负责人。
27.当归多糖铁口服液的研制与开发.市科技攻关计划。2008.01-2009.12,第一负责人。
28.药学实验教材建设与改革。中华医学会医学教育科研课。2007.12-2008.12,第一负责人。
29.当归多糖铁协同补血的血细胞调控分子生物学机理研究。省中医药中西医结合科研课题。2007.01—2008.12,第一负责人。
30.当归多糖铁协同补血的血细胞调控分子生物学机理研究.省自然科学基金. 2007.01—2008.12,第一负责人。
31.新型补铁剂当归多糖铁的研制。省科技攻关计划。2005.07—2006.12,第一负责人。
32.猪苓多糖与rIL-2结合物长循环脂质体及抗瘤活性研究。省科技攻关计划。2003.07—2004.12,第一负责人。
二、论文代表作(第一作者或通讯作者):
1.Angelica sinensis polysaccharide could alleviate the gastrointestinal damage in alcoholic fatty liver disease mice: Regulation of alcohol metabolism and enhancement of short-chain fatty acids utilization.Journal of Ethnopharmacology, p. 119117.
2.Structural elucidation of an active arabinoglucan from Gomphrena globosa and its protection effect and mechanism against metabolic dysfunction-associated steatohepatitis.Carbohydrate Polymers, 2025. 384: p. 122860.
3.Astragaluspolysaccharides alleviate DSS-induced ulcerative colitis in mice by restoring SCFA production and regulating Th17/Treg cell homeostasis in a microbiota-dependent manner.Carbohydrate Polymers, 2025. 349: p. 122829.
4.Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review.International Journal of Biological Macromolecules. 2024. 277(Pt 2): p. 134236.
5.Insights into oral lentinan immunomodulation: Dectin-1-mediated lymphatic transport from Peyer’s patch M cells to mononuclear phagocytes.Carbohydrate Polymers, 2024.346: p. 122586.
6.Intestinal lymphatic transport of Smilax china L. pectic polysaccharide via Peyer's patches and its uptake and transport mechanisms in mononuclear phagocytes.Carbohydrate Polymers, 2024. 339: p. 122256.
7.Structural elucidation and immunomodulatory activities in vitro of type I and II arabinogalactans from different origins of Astragalus membranaceus.Carbohydrate Polymers, 2024. 333: p. 121974.
8.Dendrobium officinale polysaccharide regulated hepatic stellate cells activation and liver fibrosis by inhibiting the SMO/Gli 1 pathway.Journal of Functional Foods, 2024. 112: p. 105960.
9.Degradation of Angelica sinensis polysaccharide: Structures and protective activities against ethanol-induced acute liver injury.Carbohydrate Polymers, 2024. 328: p. 121745.
10.Protective effect of Angelica sinensis polysaccharide on pregnant rats suffering from iron deficiency anemia via regulation of the hepcidin-FPN1 axis.International Journal of Biological Macromolecules, 2023. 256(Pt 2): p. 128016.
11.Preparation and evaluation of Angelica sinensis polysaccharide-modified chitosan sponge for acute liver injury protection.International Journal of Biological Macromolecules. 2023. 253(Pt 6): p. 127126.
12.Gastrointestinal metabolism characteristics and mechanism of a polysaccharide from Grifola frondose.International Journal of Biological Macromolecules. 2023,126357.
13.Angelica sinensis polysaccharide ameliorates nonalcoholic fatty liver disease via restoring estrogen-related receptor α expression in liver.Phytotherapy Research, 2023.
14.Metabolic degradation of polysaccharides from Lentinus edodes by Kupffer cells via the Dectin-1/Syk signaling pathway.Carbohydrate Polymers. 2023,317, 121108.
15.Comparison and the lipid-lowering ability evaluation method discussion of Dendrobium officinale polysaccharides from different origins based on principal component analysis.International Journal of Biological Macromolecules.2023,242, 124707.
16.Preparation, chemical structure and a-glucosidase inhibitory activity of sulfated polysaccharide from Grifola frondosa.Journal of Functional Foods.Journal of Functional Foods. 2022(98),105289.
17.Tracking the gastrointestinal digestive and metabolic behaviour of Dendrobium officinale polysaccharides by fluorescent labelling.Food & Function. 2022,13(13):7274-7286.
18.Metabolism and biodegradation of β-glucan in vivo.Frontiers in Veterinary Science. 2022,889586
19.Smilax china L. polysaccharide alleviates oxidative stress and protects from acetaminophen-induced hepatotoxicity via activating the Nrf2-ARE pathway.Frontiers in Pharmacology.2022,13,888560.
20.NIR-II imaging-guided diagnosis and evaluation of therapeutic effect on acute alcoholic liver injury via a nanoprobe.Analytical Methods.2022,14,1847
21.New understanding of Angelica sinensis polysaccharide improving fatty liver: The dual inhibition of lipid synthesis and CD36-mediated lipid uptake and the regulation of alcohol metabolism.International Journal of Biological Macromolecules.2022,207,813-825.
22.Local delivery of biocompatible lentinan/chitosan composite for prolonged inhibition of postoperative breast cancer recurrence.International Journal of Biological Macromolecules. 2022,194,233-245
23.Real-time imaging of acute alcoholic liver injury in vivo via a robust viscosity probe with aggregation-induced emission nature.Sensors and Actuators: B. Chemical.2022,355,131285
24.Pectic polysaccharide from Smilax china L. ameliorated ulcerative colitis by inhibiting the galectin-3/NLRP3 inflammasome pathway.Carbohydrate Polymers.2022,277,118864
25.Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies.Carbohydrate Polymers.2022.282.119110
26.Oral absorption characteristics and mechanisms of a pectin-type polysaccharide fromSmilax china L.across the intestinal epithelium.Carbohydrate Polymers.2021.270.118383
27.Lentinaninhibited colon cancer growth by inducing endoplasmic reticulum stress-mediated autophagic cell death and apoptosis.Carbohydrate Polymers.2021.267.118154
28.Mechanism of Lentinan Intestinal Absorption: Clathrin-Mediated Endocytosis and Macropinocytosis.Journal of agricultural and food chemistry.2021,69,7344-7352.
29.Molecular dynamics simulation of lentinan and its interaction with the innate receptor dectin-1.International Journal of Biological Macromolecules.2021,171,527-538.
30.Apoptosis induction activity of polysaccharide from Lentinus edodes in H22-bearing mice through ROS-mediated mitochondrial pathway and inhibition of tubulin polymerization.Food & Nutrition Research.2020,64,4364.
31.Possible mechanisms by which silkworm faeces extract ameliorates adenine-induced renal anaemia in rats.Journal of Ethnopharmacology.2021,266, 113448.
32.Metabolic degradation of lentinan in liver mediated by CYP450 enzymes and epoxide hydrolase.Carbohydrate Polymers.2021,253, 117255
33.Apoptosis induction activity of polysaccharide from Lentinus edodes in H22-bearing mice through ROS-mediated mitochondrial pathway and inhibition of tubulin polymerization.Food & Nutrition Research.2020,64,4364.
34.Identification of the core active structure of a Dendrobium officinale polysaccharide and its protective effect against dextran sulfate sodium induced colitis via alleviating gut microbiota dysbiosis.Food Research International. 2020,137,109641.
35.Advances in tracking of polysaccharides in vivo: Labeling strategies, potential factors and applications based on pharmacokinetic characteristics.International Journal of Biological Macromolecules.2020,163,1403-1420.
36.Angelica sinensis polysaccharide attenuates CCl4-induced liver fibrosis via the IL-22/STAT3 pathway.International Journal of Biological Macromolecules.2020,273-283.
37.Metformin and Berberine suppress glycogenolysis by inhibiting glycogen phosphorylase and stabilizing the molecular structure of glycogen in db/db mice.Carbohydrate Polymers.2020,243,116435.
38.A multifunctional magnetic nano system based on “two strikes” effect for synergistic anticancer therapy in triple-negative breast cancer.Journal of Controlled Release.2020, 322,401-415.
39.Inhibition of Dextran Sodium Sulfate-Induced Experimental Colitis in Mice by Angelica Sinensis Polysaccharide.journal of medicinal food. 2020, 23 (6), 584-592
40.Dendrobium officinale polysaccharide protected CCl4-induced liver fibrosis through intestinal homeostasis and the LPS-TLR4-NF-kB signaling pathway.Front Pharmacol. 2020, 11, 240
41.Self-assembled Angelica sinensis polysaccharide nanoparticles with an instinctive liver-targeting ability as a drug carrier for acute alcoholic liver damage protection.International Journal of Pharmaceutics. 2020, 577, 118996
42.Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure.Journal of Ethnopharmacology. 2019, 248, 112308
43.A comparative study on the structures of Grifola frondosa polysaccharides obtained by different decolourization methods and their in vitro antioxidant activities.Food & Function. 2019,10,6720-6731
44.Purification, structural elucidation and anti-inflammatory activity in vitro of polysaccharides from Smilax china L.International Journal of Biological Macromolecules, 2019, 139, 233-243.
45.A “turn-on” near-infrared fluorescent probe with high sensitivity for detecting reduced glutathione based on red shift in vitro and in vivo.Dyes and Pigments, 2020, 172, 107837
46.The preventative effects of procyanidin on binge ethanol-induced lipid accumulation and ROS over production via the promotion of hepatic autophagy.Molecular Nutrition & Food Research, 2019, 1801255.
47.Synthesis, purification, and anticancer effect of magnetic Fe3O4-loaded poly (lactic-co-glycolic) nanoparticles of the natural drug tetrandrine.Journal of Microencapsulation,2019, 4 (36): 356-370.
48.Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer.Carbohydrate Polymers,2019,219:143-154
49.Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: Pancreatic β-cell apoptosis inhibition.Journal of Functional Foods,54 (2019): 361-370
50.Correction of anemia in chronic kidney disease with Angelica sinensis polysaccharide via restoring EPO production and improving iron availability.Front Pharmacol.2018, 7 (9): 803.
51.A sensitive and rapid radiolabelling method for the in vivo pharmacokinetic study of lentinan.Food Funct., 2018, 9(6): 3114-3125.
52.Functional polysaccharide Lentinan suppresses human breast cancer growth via inducing autophagy and caspase-7-mediated apoptosis.Journal of Functional Foods.June2018, 45: 75-85.
53.Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro.International Journal of Biological Macromolecules.2018 (111): 1133-1139.
54.Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism.Journal of Functional Foods. 2018 (40): 261-271.
55.Pharmacokinetics, biodistribution and receptor mediated endocytosis of a natural Angelica sinensis polysaccharide.Artificial Cells, Nanomedicine, and Biotechnology.2018 (46): 254-263.
56.Investigation of the transport and absorption of Angelica sinensis polysaccharide through gastrointestinal tract both in vitro and in vivo.Drug Delivery.2017,24 (1): 1360-1371.
57.Acidic Polysaccharide from Angelica sinensis Reverses Anemia of Chronic Disease Involving the Suppression of Inflammatory Hepcidin and NF-κB Activation,Oxidative Medicine and Cellular Longevit,2017(2):1-13.
58.Silkworm feces extract improves iron deficiency anemia via suppressing hepcidin expression and promoting iron-regulatory proteins expression.RSC Adv. 2017,7,50378–50388
59.A polysaccharide from Lentinus edodes inhibits human colon cancer cell proliferation and suppresses tumor growth in athymic nude mice,Oncotarget.2017,8(1),610-623
60.Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocininduced type 2 diabetic BALB/c mice,Food &Function. 2016,7, 4889-4897
61.Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice,Sci. Rep. 2016,6:26229
62.Polysaccharide from Lentinus edodes combined with oxaliplatin possesses the synergy and attenuation effect in hepatocellular carcinoma,Cancer Letters. 2016,377:117-125
63.Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels.Carbohydrate Polymers. 2016,147:401-408
64.The effects of polysaccharides from the root of Angelica sinensis on tumor growth and iron metabolism in H22-bearing mice.Food & Function.2016,7:1033-1039
65.Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice.International Immunopharmacology. 2016,31:140-148
66.Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway.Journal of functional foods. 2015,15:151-159.
67.Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation of glycogen levels and reduction of inflammatory factors.Food & Function. 2015,6:902-909.
68.The action of JAK, SMAD and ERK signal pathways on hepcidin suppression by polysaccharides from Angelica sinensis in rats with iron deficiency anemia.Food & Function,2014,5:1381-1388.
69.Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus Edodes.Food Research International, 2014, 62:223-232.
70.Alkali-Soluble Polysaccharide, Isolated from Lentinus edodes, Induces Apoptosis and G2/M Cell Cycle Arrest in H22Cells Through Microtubule Depolymerization.Phytotherapy Research,2014, 12:1837-1845.
71.Structure and inducing tumor cell apoptosis activity of polysaccharide isolated fromLentinus edodes.Journal of agricultural and food chemistry, 2013, 61, 41, 9849–9858.
72.Polysaccharide isolated from angelica sinensis inhibits hepcidin expression in rats with iron deficiency anemia.Journal of Medical Food, 2012,15 (10):923–929.
73.Study to establish the role of JAK2 and SMAD1/5/8 pathways in the inhibition of hepcidin by polysaccharides from Angelica sinensis.Journal of Ethnopharmacology, 2012, 144:433-440.
74.Comparison of two kinds of magnetic nanoparticles in vivo and in vitro.J Huazhong Univ Sci Technol,2012,32(3):444-450.
75.Inhibitory effect of polysaccharides isolated from Angelica sinensis on hepcidin expression. Journal of Ethnopharmacology, 2011, 134: 944- 948.
76.Structure,Chain comformation and antitumor activity of a novel polysaccharide from Lentinus edodes. Fitoterapia, 2010, 81: 1163-1170.
77.Molecular Weight and Proposed Structure of the Angelica sinensis Polysaccharide-iron Complex [J]. Chinese Journal of Chemistry, 2008, 26, 1068-1074.
78.Effect of Angelica sinensis Polysaccharide-iron Complex on Iron Deficiency Anemia Rats. Chinese Journal of Integrative Medicine,2007,13(4):297-300
79.Effects of angelica sinensis polysaccharide-iron complex on hemolytic anemia and bone marrow injury in mice. Journal of Chinese Pharmaceutical Sciences,2008,(17):197-202
80.Preparation and Identification of Angelica sinensis Polysaccharide-iron Complex. Chemical Research in Chinese Universities.2005,21(6): 668-672
81.当归多糖铁治疗缺铁性贫血大鼠实验研究,中国新药与临床杂志,2007, 26(6):413-416
82.当归多糖铁理化性质的初步研究.中国中药杂志,2006,18(2):71-73
83.当归多糖铁胃内漂浮缓释胶囊的制备及质量控制.中国医院药学杂志, 2007,27(7):951-953
84.当归多糖铁小鼠口服的急性毒性研究.中国医院药学杂志,2009,29(4):291-292.
85.人hepcidin真核表达载体的构建及稳定转染细胞系的建立.华中科技大学学报(医学版),2010,39(4):524-527
86.855.当归多糖铁大鼠体内药动学参数与给药剂量的关系.中国医院药学杂志,2010,30(3):183-185
87.当归多糖铁胃内滞留缓释片的制备及其犬体内药动学.中国医院药学杂志,2011,31(5):365-369
88.当归多糖铁复合物在大鼠体内2种不同吸收途径的研究.中国医院药学杂志,2011,31(7):531-535.
89.当归多糖铁胃内滞留缓释片在犬体内的药物动力学研究.药物分析杂质,2011,31(4):629-632
三、获奖情况:
2002年获华中科技大学教学质量优秀二等奖;
2006年获华中科技大学首届十大魅力教师称号;
2006年获华中科技大学“三育人”奖;
2006年获华中科技大学优秀青年教师称号;
2008年获华中科技大学优秀女教职工称号;
2010年获“湖北省科技进步二等奖”(第一负责人);
2011年获华中科技大学优秀驻外科技工作者称号;
2013年获湖北省教育系统先进女教职工称号;
2014年获华中科技大学优秀共产党员称号;
2015年获华中科技大学“知心导师”称号。
2021年获“湖北省科技进步一等奖”(第二负责人)
2023年入选湖北省“楚天英才计划”医疗卫生人才项目
四、专利:
1.王凯平(王凯平;聂刚;张玉;宋梦姿;许静雅;崔政;汪会玲):一种用于肝部成像的近红外II区纳米探针及其制备与应用,授权发明专利,专利号:ZL202111548374.3
2.王凯平(王凯平;张玉;舒亚民;罗立;宋之臻;王娜;周涛):一种用SPECT成像的当归多糖衍生物及其合成方法,授权发明专利,专利号:ZL201510381731.X
3.王凯平(王凯平;张玉;聂刚;王红静;汪汉香;刘亚鸽;吴止境;杨夏雯;周涛):一种用于近红外成像的石斛多糖荧光标记物及其合成方法,授权发明专利,专利号:ZL201810948911.5
4.张玉(张玉;唐文琦;王凯平;聂刚;郑子明;刘宇轩;周治宏):一种用于近红外成像的香菇多糖荧光标记物及其合成方法,授权发明专利,专利号:ZL 2022 1 0863325.7
5.张玉(张玉;聂刚;王凯平;汪会玲;郑子明;崔政;吴止境):用于识别谷胱甘肽的近红外荧光探针及其制备和应用,授权发明专利,专利号:ZL201910749586.4
6.王凯平(王凯平;许静雅;张玉;崔政;何自毫;顾赛赛):一种当归多糖载姜黄素纳米复合物及制备方法与应用,授权发明专利,专利号:ZL 2022 1 1214755.2
联系方式:027—83692733 E-mails: wkpzcq@163.com
通讯地址:武汉市航空路13号,华中科技大学同济医学院药学院药学系物理化学教研室邮政编码430030