刘俊军博士,华中科技大学同济医学院药学院副教授、博士生导师。主要从事计算药物设计和发现,以及与之相关的生物大分子(蛋白质或DNA)同底物分子作用的分子结构和反应机理的研究。同时也开发和发展能提高计算药物设计的可靠性和有效性的新的、最先进的计算方法。目前在J. Am. Chem. Soc.,J. Chem. Theory Comput.,J. Phys. Chem. B,J. Comput. Chem.等SCI收录的国际一流杂志上共发表学术论文18篇,总影响因子>88,他引总次数>260,H指数13。2013年受邀在XIV International Symposium on Cholinergic Mechanisms (第十四届国际胆碱机制研讨会)上做特邀报告。
联系方式
电话:15527455184
Email:junjun.liu@hust.edu.cn
地址:湖北省武汉市航空路13号,华中科技大学同济医学院,药学院2号楼202室
个人简历
1998 - 2002年,华中师范大学化学学院,理学学士
2002 - 2009年,华中师范大学化学学院,硕博连读
2006 - 2009年,美国肯塔基大学药学院,联合培养,2009年回华中师范大学答辩获得博士学位
2009 - 2010年,美国肯塔基大学药学院,博士后研究员
2011 -至今,华中科技大学同济医学院药学院,副教授,博士生导师
主要学术成绩
近年来在发展QM/MM方法,溶剂化理论、虚拟药物筛选方法等方面取得了重要的科研成果。所发展并程序化的QM/MM-FE方法是是目前研究酶的催化反应基本反应机理的最有力的工具;所开发的SMVLE溶剂化方法是目前预测绝对溶剂化能最为准确的方法。目前在J Am Chem Soc,J Phys Chem B,J Chem Theory Comput,J Comput Chem等SCI收录的顶级和一流的杂志中共发表学术论文18篇,总影响因子>88,他引总次数>260,H指数13。
特别是在QM/MM方法发展方面,通过修改Gaussian 03和AMBER8程序发展并重新程序化了pseudobond QM/MM-FE方法。该方法既能在量子化学级别下进行反应坐标计算,又能同时有效考虑酶环境对反应进程的影响,是研究酶的催化反应机理最有力的计算工具之一,能为合理化设计高活性突变酶提供可靠的结构和机理信息。目前已利用该方法进行了一系列酶的催化反应机理、高活性突变酶的设计等方面的研究工作,包括能高效降解可卡因的BChE突变酶的设计、可卡因酯酶催化水解可卡因的基本反应机理的研究、BChE高活性突变酶对可卡因、乙酰胆碱、硫代乙酰胆碱等底物的水解机理的研究、AChE-dimethylphosphoryl重活化机理的研究等等。借助该方法,我们设计出来的BChE工程酶水解可卡因的效率比野生酶提高了~2000倍,能有效地保护试验鼠在注射致死剂量(> LD100)的可卡因之后依然存活,是降解可卡因最快的酶,目前该BChE工程酶的研究已进入临床二期阶段。
主要的科研与教学研究项目
1. “SVPE溶剂化方法的发展”,华中科技大学自主创新研究基金国际科技合作项目,2013ZZGH026,2013.7-2014.12
2. “基于结构和反应机理的具有较高有机磷水解活性的人体丁酰胆碱酯酶突变酶的合理化设计”,国家自然科学基金,NSFC21102050, 2012.1 – 2014.12
3. “基于结构和反应机理的药物设计方法及其应用”,湖北省自然科学基金,2011CDB374,2011.6-2012.12
4. “丁酰胆碱酯酶水解有机磷化合物的催化反应机理”,华中科技大学自主创新研究基金, 2011.6 – 2012.12
5. “计算药物设计平台的建设和相关理论的发展及应用”,华中科技大学人才引进基金,2011.2 – 2014.6
6. “人才培养的新模式――药学前沿领域课程的整合研究”,华中科技大学教学研究项目,2011.6 – 2013.6
已发表文章
1. Liu, J.; Zhan, C.-G., Reaction Pathway and Free Energy Profile for Cocaine Hydrolase-Catalyzed Hydrolysis of (−)-Cocaine. J. Chem. Theory Comput. 2012,8(4), 1426–1435.
2. Yao, Y.;Liu, J.(co-first authors); Zhan, C.-G., Why Does the G117H Mutation Considerably Improve the Activity of Human Butyrylcholinesterase against Sarin? Insights from Quantum Mechanical/Molecular Mechanical Free Energy Calculations. Biochemistry 2012, 51 (44), 8980-8992
3. Liu, J.; Zhao, X.; Yang, W.; Zhan, C.-G., Reaction Mechanism for Cocaine Esterase-Catalyzed Hydrolyses of (+)- and (+)-Cocaine: Unexpected Common Rate-Determining Step. J. Phys. Chem. B2011, 115 (17), 5017–5025.
4. Liu, J.; Kelly, C. P.; Goren, A. C.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G.; Zhan, C.-G., Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell. J. Chem. Theory Comput. 2010, 6 (4), 1109-1117.
5. Wei, D.; Huang, X.;Liu, J.; Tang, M.; Zhan, C.-G., Reaction Pathway and Free Energy Profile for Papain-Catalyzed Hydrolysis of N-Acetyl-Phe-Gly 4-Nitroanilide. Biochemistry 2012, 52 (30), 5145-5154.
6. Xiong, Y.;Liu, J. (co-first authors); Yang, G. F.; Zhan, C.-G., Computational determination of fundamental pathway and activation barriers for acetohydroxyacid synthase-catalyzed condensation reactions of alpha-keto acids. J. Comput. Chem. 2010, 31 (8), 1592-602.
7. Liu, J.; Hamza, A.; Zhan, C.-G., Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase. J. Am. Chem. Soc. 2009, 131 (33), 11964-75.
8. Liu, J.; Zhang, Y.; Zhan, C.-G., Reaction pathway and free-energy barrier for reactivation of dimethylphosphoryl-inhibited human acetylcholinesterase. J. Phys. Chem. B 2009, 113 (50), 16226-36.
9. Chen, X.; Fang, L.;Liu, J.; Zhan, C.-G., Reaction Pathway and Free Energy Profile for Butyrylcholinesterase-Catalyzed Hydrolysis of Acetylcholine. J. Phys. Chem. B 2010, 115 (5), 1315-1322.
10.Xue, L.; Ko, M. C.; Tong, M.; Yang, W.; Hou, S.; Fang, L.;Liu, J.; Zheng, F.; Woods, J. H.; Tai, H. H.; Zhan, C. G., Design, preparation, and characterization of high-activity mutants of human butyrylcholinesterase specific for detoxification of cocaine. Mol. Pharmacol. 2011, 79 (2), 290-7.
11.Zheng, F.; Yang, W. C.; Xue, L.; Hou, S. R.;Liu, J.; Zhan, C. G., Design of High-Activity Mutants of Human Butyrylcholinesterase against (-)-Cocaine: Structural and Energetic Factors Affecting the Catalytic Efficiency. Biochemistry 2010, 49 (42), 9113-9119.
12.Hamza, A.; Tong, M.; AbdulHameed, M. D.;Liu, J.; Goren, A. C.; Tai, H. H.; Zhan, C.-G., Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (mPGES-1) trimer with substrate PGH2 and cofactor GSH: insights from computational alanine scanning and site-directed mutagenesis. J. Phys. Chem. B 2010, 114 (16), 5605-16.
13.Zheng, F.; Yang, W. C.; Ko, M. C.;Liu, J.; Cho, H.; Gao, D. Q.; Tong, M.; Tai, H. H.; Woods, J. H.; Zhan, C.-G., Most efficient cocaine hydrolase designed by virtual screening of transition states. J. Am. Chem. Soc. 2008, 130 (36), 12148-12155.
14.AbdulHameed, M. D. M.; Hamza, A.;Liu, J.; Zhan, C.-G., Combined 3D-QSAR Modeling and molecular docking study on indolinone derivatives as inhibitors of 3-phosphoinositide-dependent protein kinase-1. J. Chem. Inf. Model. 2008, 48 (9), 1760-1772.
15.AbdulHameed, M. D. M.; Hamza, A.;Liu, J.; Huang, X. Q.; Zhan, C.-G., Human microsomal prostaglandin E synthase-1 (mPGES-1) binding with inhibitors and the quantitative structure-activity correlation. J. Chem. Inf. Model. 2008, 48 (1), 179-185.
16.Bargagna-Mohan, P.; Hamza, A.; Kim, Y. E.; Ho, Y. K. A.; Mor-Valknin, N.; Wendschlag, N.;Liu, J.; Evans, R. M.; Markovitz, D. M.; Zhan, C.-G.; Kim, K. B.; Mohan, R., The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem. Biol. 2007, 14 (6), 623-634.
17.Zhou, J.; Yuan, G.;Liu, J.; Zhan, C.-G., Formation and stability of G-quadruplexes self-assembled from guanine-rich strands. Chem. Eur. J. 2007, 13 (3), 945-949.
18.Zhang, Q. Y.; Wan, J.; Xu, X.; Yang, G. F.; Ren, Y. L.;Liu, J.; Wang, H.; Guo, Y., Structure-based rational quest for potential novel inhibitors of human HMG-CoA reductase by combining CoMFA 3D QSAR modeling and virtual screening. J. Comb. Chem. 2007, 9 (1), 131-138.