张 玉,男,1968年生,二级教授,主任药师,博士硕士生导师,湖北省第二届医学领军人才,国务院津贴获得者;现任华中科技大学附属协和医院党委书记、药学教研室主任、临床药学研究室主任和湖北省重大疾病精准用药临床医学研究中心负责人,学术兼职有中国药学会医院药学专业委员会主任委员,中华医学会临床药学分会侯任主任委员、中国临床实践指南联盟药学组专业委员会主任委员、中国现代医院管理制度智库医院药事管理专家委员会主任委员、湖北省药学会医院药学专业委员会主任委员和《中国医院药学杂志》主编等。1991年同济医科大学药学院药学本科毕业,2002年获药学硕士学位,2012年获药理学博士学位。
研究方向:
医院药事管理;
药物经济学;
药物制剂及其生物效应;
新药开发及其研制;
植物多糖活性物质及其作用机制;
植物多糖肝靶向及肝靶向载体可行性研究。
研究及获奖情况:
张玉教授先后主持或参与国家自然科学基金6项,国家重点研发计划1项,十三五国家重点研发计划“精准医学研究”重点专项子课题1项、省自然基金重点项目1项,省重点研发计划项目2项,省科技攻关计划3项,省自然科学基金2项,省中医药中西医结合科研课题1项,市攻关计划1项等,累计科研经费4500余万元。目前已在国内外一流刊物发表SCI及核心论文200余篇,其中4篇被选为TOP期刊封面文章,获得发明专利授权9项和软件著作权9项,主编、主审、主译书籍11本。参与湖北省科研课题“菝葜治疗妇科盆腔慢性炎性包块的药理及有效成分研究”,并获湖北省科技进步二等奖、武汉市科技进步三等奖。2010年以第二负责人完成的项目《当归多糖铁复合物治疗铁代谢障碍性贫血的研究》获湖北省科技进步二等奖。2016年以第一负责人完成的项目《移植患者精准免疫抑制治疗的临床药学关键技术》获湖北省科技进步一等奖,2021年以第一负责人完成的项目《香菇多糖代谢及抗肿瘤相关技术创新与应用》获湖北省科技进步一等奖。
一、科研项目:
1. “O2O”模式在临床药师规范化培训中的应用研究.教改项目,2020.01-2022.12.第一负责人。
2. 猪苓多糖与rIL-2结合物长循环脂质体及抗瘤活性研究.省科技攻关计划. 2003.7—2004.12,第一负责人。
3. 复方猪苓多糖与rIL-2长循环脂质体及抗瘤活性研究.湖北省科技攻关计划. 2005.1—2006.12,第一负责人。
4. 新型补铁剂当归多糖铁精细结构的鉴定及方法学研究.湖北省自然基金项目. 2007.9—2009.8,第一负责人。
5. 当归多糖铁协同补血的血细胞调控分子生物学机理研究.省自然科学基金. 2007.1—2008.12,第二负责人。
6. 当归多糖铁协同补血的血细胞调控分子生物学机理研究.省中医药中西医结合科研课题. 2007.1—2008.12,第二负责人。
7. 新型补铁剂当归多糖铁的研制.湖北省科技攻关计划. 2005.1—2006.12,第二负责人。
8. 注射级香菇多糖的提取工艺研究.横向课题. 2007.9-2008.9,第二负责人。
9. 当归多糖铁口服液的研制与开发.市科技攻关计划. 2008.1-2009.12,第二负责人。
10. 湖北道地植物多糖及其铁复合物开放铁释放通道调节铁代谢的作用研究.省自然基金重点项目. 2008.10-2011.9,第二负责人。
11. 当归多糖特异性肝靶向的分子机理研究.国家自然科学基金,2011.1-2013.12,第二负责人。
12. 当归多糖作为肝靶向给药系统载体的可行性研究.华中科技大学自然重点项目. 2010.10-2012.09,第二负责人。
13. 香菇多糖药用研究.横向课题, 2011.6-2013.6,第二负责人。
14. 当归多糖抑制hepcidin表达的分子机制研究.国家自然科学基金,2010.1-2010.12,第二负责人。
15. 当归多糖作为铁调素抑制剂参与机体铁代谢的分子机制研究.国家自然科学基金,2013.1-2016.12,第二负责人。
16. 香菇多糖非免疫途径抗肿瘤作用的分子机制研究.武汉市科技攻关, 2013.1-2014.12,第二负责人。
17. 香菇多糖抗肿瘤构效关系及诱导肿瘤细胞凋亡的分子机制研究.国家自然科学基金, 2014.1-2017.12,第一负责人。
18. 药用植物多糖的绿色提取工艺、结构鉴定及新剂型的关键技术研发.湖北省科技支撑计划项目2014BKB088, 2014.1-2015.12,第二负责人。
19. 当归多糖靶向性调节肝细胞胰岛素敏感参与机体糖脂代谢的分子机制研究.华中科技大学自主创新项目, 2014.12-2016.12,第一负责人。
20. 当归多糖调节机体糖脂代谢紊乱的分子机制研究,武汉市科技计划,2016060101010059,2016/08-2018/08,15万,第二负责人
21. 中药复方多糖提取工艺、降糖降脂功效及新剂型的关键技术研究,湖北省技术创新专项重大项目,2016ACA147,2017/01-2018/12,50万,第二负责人
22. 典型病种精准用药模型集成、推广与优化,国家重点研发计划子课题,2017.07-2020.12,822万,第一负责人,
23. 生血宁片通过调节EPO表达改善肾性贫血的作用及分子机制研究.横向课题.2018.03-2019.09,第二负责人。
24. 中药复方多糖提取工艺及降糖降脂功效研究.横向课题. 2018.06-2020.06,第二负责人。
25. 天然多糖体内检测方法的建立和药代动力学机制研究.省自然基金重点项目. 500万. 2018.6-2020.12,第一负责人。
26. Dectin-1介导的香菇多糖体内吸收代谢机制研究.国家自然科学基金. 55万. 2020.01-2023.12,第一负责人。
27. Dectin-1介导的香菇多糖体内吸收代谢机制研究.中国医疗手牵手工程委员会、北京医学奖励基金会. 100万. 2020.01-2023.12,第二负责人。
28. 基于多组学的器官移植免疫抑制精准用药技术研发及应用.省重点研发计划项目. 2020.08-2022.12, 200万.第一负责人。
29. endo-β-1,4-mannanase和MR介导的铁皮石斛多糖胃肠道药代动力学机制研究.国家自然科学基金. 56万. 2021.01-2024.12,第二负责人。
30. 国产高端智能医疗机器人系统的研制和应用,湖北省科技重点研发专项,2023.08-2025.12,500万,第一负责人。
31. 基于靶标组学的复方用药AI药效评估与智能推荐系统的开发及应用,科技部项目,2023.11-2026.10,2145.72万,第一负责人。
32. 天然多糖核素标记及示踪其肝脏代谢的关键技术研究,国家基金委项目,2024.01-2027.12,260万,第一负责人。
二、论文代表作(第一作者或通讯作者):
药事管理类:
1. Genetic and clinical factors associated with opioid response in Chinese Han patients with cancer pain: An exploratory cross-sectional study[J]. Pain and Therapy, 2022, 11(1): 269-288.
2. Antibody drug conjugate: the “biological missile” for targeted cancer therapy[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 93.
3. Clinical Observation of the Effects of Oral Opioid on Inflammatory Cytokines and Gut Microbiota in Patients with Moderate to Severe Cancer Pain: A Retrospective Cohort Study[J]. Pain and Therapy, 2022, 11(2): 667-681.
4. Knowledge, attitudes, and practices toward cancer pain management amongst healthcare workers (physicians, pharmacists, and nurses): a cross-sectional study from first-tier cities in China[J]. Supportive Care in Cancer, 2022, 30(9): 7261-7269.
5. Efficacy and safety of thalidomide as a pre-medication of chemotherapy-induced nausea and vomiting (CINV) following highly emetogenic chemotherapy (HEC): a systematic review and meta-analysis[J]. Frontiers in Oncology, 2022, 11: 5915.
6. Chemotherapy-Induced Myelosuppression in Esophageal Cancer Patients: Risks and Suggestions for Its Management[J]. Current Medical Science, 2022, 42(3): 530-537.
7. Predictive Model of Chemotherapy-Induced Myelosuppression for Patients with Esophageal Cancer[J]. Cancer Control, 2022, 29: 10732748221126929.
8. Prediction of response and adverse drug reaction of pemetrexed plus platinum-based chemotherapy in lung adenocarcinoma by serum metabolomic profiling[J]. Translational Oncology, 2022, 19: 101393.
9. The importance of CYP2C19 genotype in tacrolimus dose optimization when concomitant with voriconazole in heart transplant recipients[J]. British Journal of Clinical Pharmacology, 2022, 88(10): 4515-4525.
10. CYP3A4/5 genotypes and age codetermine tacrolimus concentration and dosage in pediatric heart transplant recipients[J]. International Immunopharmacology, 2022, 111: 109164.
11. A VEGFR targeting peptide-drug conjugate (PDC) suppresses tumor angiogenesis in a TACE model for hepatocellular carcinoma therapy[J]. Cell Death Discovery, 2022, 8(1): 411.
12. Imatinib dose optimization based on therapeutic drug monitoring in Chinese patients with chronic‐phase chronic myeloid leukemia[J]. Cancer, 2022, 128(22): 3951-3958.
13. Analysis of risk factors and establishment of a risk prediction model for post-transplant diabetes mellitus after kidney transplantation[J]. Saudi Pharmaceutical Journal, 2022, 30(8): 1088-1094.
14. Tacrolimus Concentration Is Effectively Predicted Using Combined Clinical and Genetic Factors in the Perioperative Period of Kidney Transplantation and Associated with Acute Rejection[J]. Journal of Immunology Research, 2022.
15. Retrospective Analysis of the Risk Factors of Perioperative Bacterial Infection and Correlation with Clinical Prognosis in Kidney Transplant Recipients[J]. Infection and Drug Resistance, 2022: 2271-2286.
16. HCK is a potential prognostic biomarker that correlates with immune cell infiltration in acute myeloid leukemia[J]. Disease Markers, 2022, 2022.
17. Population pharmacokinetic study of pemetrexed in chinese primary advanced non-small cell lung carcinoma patients[J]. Frontiers in Pharmacology, 2022, 13.
18. Chemotherapy-Induced Myelosuppression in Esophageal Cancer Patients: Risks and Suggestions for Its Management[J]. Current Medical Science, 2022, 42(3): 530-537.
19. Population pharmacokinetic study of pemetrexed in chinese primary advanced non-small cell lung carcinoma patients[J]. Frontiers in Pharmacology, 2022, 13.
20. Prediction of response and adverse drug reaction of pemetrexed plus platinum-based chemotherapy in lung adenocarcinoma by serum metabolomic profiling[J]. Translational Oncology, 2022, 19: 101393.
21. Smilax china L. polysaccharide alleviates oxidative stress and protects from acetaminophen-induced hepatotoxicity via activating the Nrf2-ARE pathway[J]. Frontiers in Pharmacology, 2022, 13.
22. A novel immune-related ceRNA network that predicts prognosis and immunotherapy response in lung adenocarcinoma. Ann Transl Med 2021, 9(18): 1484.
23. Application of Quality Control Circle Activity in Improving Effectiveness of Drug Intervention in Lung Cancer Patients with Moderate to Severe Pain. Curr Med Sci 2021, 41(5): 996-1003.
24. Comparison of a Point-of-Care Testing with Enzyme-Multiplied Immunoassay Technique and Liquid Chromatography Combined With Tandem Mass Spectrometry Methods for Therapeutic Drug Monitoring of Mycophenolic Acid: A Preliminary Study. THER DRUG MONIT 2021, 43(5): 630-636.
25. Effects and safety evaluation of Wuzhi Capsules combined with tacrolimus for the treatment of kidney transplantation recipients. J CLIN PHARM THER 2021, 46(6): 1636-1649.
26. Genetic Polymorphisms Affecting Tacrolimus Metabolism and the Relationship to Post-Transplant Outcomes in Kidney Transplant Recipients. Pharmgenomics Pers Med 2021, 14: 1463-1474.
27. Precise pathological classification of non-small cell lung adenocarcinoma and squamous carcinoma based on an integrated platform of targeted metabolome and lipidome. METABOLOMICS 2021, 17(11): 98.
28. Protective Effects and Mechanisms of Polyethylene Glycol Loxenatide Against Hyperglycemia and Liver Injury in db/db diabetic Mice. FRONT PHARMACOL 2021, 12: 781856.
29. The Effects of Oral Sodium Bicarbonate on Renal Function and Cardiovascular Risk in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. THER CLIN RISK MANAG 2021, 17: 1321-1331.
30. Toxicities and Associated Factors in Patients Receiving Temozolomide-Containing Regimens: A 12-Year Analysis of Hospital Data. Drug Des Devel Ther 2021, 15: 2151-2159.
31. Cost-Effectiveness of Zoledronic Acid Versus Oral Alendronate for Postmenopausal Osteoporotic Women in China, Frontiers in Pharmacology, 2020, 11:1-10.
32. Cost-Effectiveness Analysis Of EGFR Mutation Testing And Afatinib Versus Gemcitabine-Cisplatin As First-Line Therapy For Advanced Non-Small-Cell Lung Cancer In China, Cancer Management and Research, 2019, 11:10239-10248.
33. Cost Effectiveness of Bosentan for Pulmonary Arterial Hypertension: A Systematic Review, Canadian Respiratory Journal, 2018, 1-12.
34. Pharmacy administration and pharmaceutical care practice in a module hospital during the COVID-19 epidemic. Journal of the American Pharmacists Association. 2020, 60:431-438.
35. 国产和进口替莫唑胺胶囊治疗脑胶质瘤的药物经济学评价[J].药物评价研究,2021,44(01):111-115.
36. 建设“健康中国”公立医院如何作为[N].人民政协报,2020-12-18(003).
37. 新型冠状病毒肺炎合并脑卒中患者的合理用药与药学监护[J].药物评价研究,2020,43(12):2557-2564.
38. 党的领导在公立医院防控新冠肺炎疫情中的实践探析[J].中国医院,2020,24(11):8-10.
39. 生物信息学共表达外推法初构食管癌精准化疗生物标志物模型[J].中国医院药学杂志,2020,40(23):2440-2444.
40. 医疗机构药品遴选指南计划书[J].中国医院药学杂志,2020,40(24):2501-2505.
41. 以人民为中心:新冠肺炎疫情防控工作的价值追求[J].决策与信息,2020(10):14-19.
42. 供给侧思维下三级综合医院学科建设[J].解放军医院管理杂志,2020,27(07):664-666.
43. 针对单剂量口服分包药品的病区“无纸化核对系统”的建立与应用[J].中国医院药学杂志,2020,40(13):1471-1473+1483.
44. COVID-19疫情期间捐赠药品的管理实践与思考[J].药物评价研究,2020,43(06):1003-1007.
45. 武汉协和医院当“绩考”遇到“疫考”[J].中国卫生,2020(06):34-36.
46. “零接触”信息化药学服务在医院防控新冠肺炎疫情中的应用[J].中国数字医学,2020,15(05):51-54.
47. 质子泵抑制剂优化应用专家共识[J/OL].中国医院药学杂志:1-24[2021-01-15].
48. 回顾新冠肺炎合理用药的关键点[N].健康报,2020-04-28(008).
49. COVID-19疫情期间门诊药学服务O2O模式的实践与探讨[J].中国医院药学杂志,2020,40(14):1511-1515.
50. 让党旗在抗疫一线高高飘扬[N].健康报,2020-04-15(007).
51. 新型冠状病毒肺炎(COVID-19)合并糖尿病患者的药学服务和监护策略[J].药物评价研究,2020,43(04):601-605.
52. “参与式问责”提升医院民主管理效能实践与探索[J].中国医院,2020,24(04):72-73.
53. 江汉方舱医院药事管理与药学服务实践[J].中国药师,2020,23(04):702-706.
54. 方舱医院290名新型冠状病毒肺炎患者用药现状分析与建议[J].中国医院药学杂志,2020,40(11):1189-1191.
55. 新型冠状病毒肺炎疫情下的合理用药及药学服务策略[J].中国医院药学杂志,2020,40(10):1071-1076.
56. 方舱医院线上药学服务模式的实践与探讨[J].中国医院药学杂志,2020,40(08):876-879.
57. 新型冠状病毒肺炎重型危重型患者的规范化营养治疗药学服务路径[J].医药导报,2020,39(05):645-649.
58. 方舱医院新型冠状病毒肺炎患者治疗的药学监护[J].医药导报,2020,39(05):650-653.
59. 新型冠状病毒肺炎疫情中后期重点工作与策略探析[J].中国医院管理,2020,40(03):9-11.
60. 基于疫情暴发地定点医院视角的新型冠状病毒肺炎防治实践与思考[J].中国医院管理,2020,40(03):18-21.
61. 大型三甲医院静脉用药调配中心COVID-19疫情防控策略[J].中国医院药学杂志,2020,40(04):359-363.
62. 新型冠状病毒肺炎疫情防控的药学应急保障难点与应对[J].中国医院药学杂志,2020,40(03):243-249.
63. 新型冠状病毒感染肺炎重症患者的营养支持及监护建议[J].中国医院药学杂志,2020,40(05):471-473.
64. 药学应急保障应建四个机制[N].健康报,2020-02-17(005).
65. 新型冠状病毒肺炎疫情下治疗药物监测实验室感染防控策略[J].医药导报,2020,39(03):330-333.
66. 深学细悟践行为民服务宗旨[N].健康报,2020-02-03(005).
67. “开门”抓教育 “门口”解民忧 办群众满意医院[N].健康报,2020-01-15(002).
68. 基于多因素评价法的医院职能部门绩效评价[J].中国卫生质量管理,2019,26(06):23-26.
69. 以党的建设全面引领医院改革发展——武汉协和医院贯彻落实党委领导下的院长负责制工作实践[J].学习月刊,2019(11):38-40.
70. 三级公立医院参与企业医院改制实践与探讨[J].中国医院,2019,23(10):42-44.
71. 综合性医院培养全科医生的实践与思考[J].中国医院,2019,23(04):73-75.
72. 应用Markov模型对厄贝沙坦和比索洛尔治疗高血压伴心衰的长期药物经济学评价[J].中国药学杂志,2017,52(24):2209-2213.
73. 让“失责必问”成为常态[N].健康报,2016-10-24(006).
74. 药物基因检测:实现精准医疗的阶梯[J].中国医院药学杂志,2015:22-34+21.
75. 武汉协和医院:践行群众路线开展特色管理[J].党建,2014(07):48-49.
76. 为执行力顺畅抵达“拆墙建桥”[N].健康报,2014-06-16(005).
77. 部管医院参与区域卫生一体化建设的实践与探讨[J].中国医院,2013,17(06):73-75.
78. 公立医院与基层医疗卫生机构分工协作的现状及策略[J].中国医院管理,2013,33(04):11-13.
79. 中外医院管理队伍职业化研究差异[J].中国医院,2013,17(01):30-33.
80. 做好干部医疗保健工作的实践体会[J].现代医院管理,2009,7(05):59-61.
81. 构建医患沟通路径的实践与探讨[J].中国医院,2008(04):58-60.
基础研究类:
1. Angelica sinensis polysaccharide could alleviate the gastrointestinal damage in alcoholic fatty liver disease mice: Regulation of alcohol metabolism and enhancement of short-chain fatty acids utilization. Journal of Ethnopharmacology, p. 119117.
2. Astragalus polysaccharides alleviate DSS-induced ulcerative colitis in mice by restoring SCFA production and regulating Th17/Treg cell homeostasis in a microbiota-dependent manner. Carbohydrate Polymers, 2025. 349: p. 122829.
3. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. International Journal of Biological Macromolecules, 2024. 277(Pt 2): p. 134236.
4. Insights into oral lentinan immunomodulation: Dectin-1-mediated lymphatic transport from Peyer’s patch M cells to mononuclear phagocytes. Carbohydrate Polymers, 2024.346: p. 122586.
5. Intestinal lymphatic transport of Smilax china L. pectic polysaccharide via Peyer's patches and its uptake and transport mechanisms in mononuclear phagocytes. Carbohydrate Polymers, 2024. 339: p. 122256.
6. Degradation of Angelica sinensis polysaccharide: Structures and protective activities against ethanol-induced acute liver injury. Carbohydrate Polymers, 2024. 328: p. 121745.
7. Structural elucidation and immunomodulatory activities in vitro of type I and II arabinogalactans from different origins of Astragalus membranaceus. Carbohydrate Polymers, 2024. 333: p. 121974.
8. Lipocalin 2 (LCN2) confers acquired resistance to almonertinib in NSCLC through LCN2-MMP-9 signaling pathway, Pharmacological Research. 2024, 201: 107088.
9. Clinical efficacy of ceftazidime/avibactam combination therapy for severe hospital-acquired pulmonary infections caused by carbapenem-resistant and difficult-to-treat Pseudomonas aeruginosa. Int J Antimicrob Agents. 2024; 63(1):107021.
10. Antitumor activity of aumolertinib, a third-generation EGFR tyrosine kinase inhibitor, in non-small-cell lung cancer harboring uncommon EGFR mutations. Acta Pharm Sin B. 2023; 13: 2613-27.
11. Protective effect of Angelica sinensis polysaccharide on pregnant rats suffering from iron deficiency anemia via regulation of the hepcidin-FPN1 axis. International Journal of Biological Macromolecules, 2023. 256(Pt 2): p. 128016.
12. Preparation and evaluation of Angelica sinensis polysaccharide-modified chitosan sponge for acute liver injury protection. International Journal of Biological Macromolecules. 2023. 253:127126.
13. Gastrointestinal metabolism characteristics and mechanism of a polysaccharide from Grifola frondose. International Journal of Biological Macromolecules. 2023,126357.
14. Metabolic degradation of polysaccharides from Lentinus edodes by Kupffer cells via the Dectin-1/Syk signaling pathway. Carbohydrate Polymers. 2023,317, 121108.
15. Comparison and the lipid-lowering ability evaluation method discussion of Dendrobium officinale polysaccharides from different origins based on principal component analysis.International Journal of Biological Macromolecules. 2023,242, 124707.
16. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther. 2022; 7: 93.
17. Treatment-related adverse events associated with HER2-Targeted antibody-drug conjugates in clinical trials: A systematic review and meta-analysis[J]. eClinicalMedicine, 2022: 101795.
18. Preparation, chemical structure and a-glucosidase inhibitory activity of sulfated polysaccharide from Grifola frondosa. Journal of Functional Foods. Journal of Functional Foods. 2022(98),105289.
19. Metabolism and biodegradation of β-glucan in vivo. Frontiers in Veterinary Science. 2022,889586
20. Smilax china L. polysaccharide alleviates oxidative stress and protects from acetaminophen-induced hepatotoxicity via activating the Nrf2-ARE pathway.Frontiers in Pharmacology.2022,13,888560.
21. NIR-II imaging-guided diagnosis and evaluation of therapeutic effect on acute alcoholic liver injury via a nanoprobe. Analytical Methods. 2022,207,813-825.
22. New understanding of Angelica sinensis polysaccharide improving fatty liver: The dual inhibition of lipid synthesis and CD36-mediated lipid uptake and the regulation of alcohol metabolism. International Journal of Biological Macromolecules. 2022,207,813-825.
23. Natural product alantolactone targeting AKR1C1 suppresses cell proliferation and metastasis in non-small-cell lung cancer[J]. Frontiers in Pharmacology, 2022, 13.
24. Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies[J]. Carbohydrate Polymers, 2022: 119110.
25. Structural characterisation and structure-antioxidant activity relationship of polysaccharides from Dendrobium catenatum Lindl[J]. Natural Product Research, 2022: 1-7.
26. Preparation, chemical structure and α-glucosidase inhibitory activity of sulfated polysaccharide from Grifola frondosa[J]. Journal of Functional Foods, 2022, 98: 105289.
27. Local delivery of biocompatible lentinan/chitosan composite for prolonged inhibition of postoperative breast cancer recurrence. International Journal of Biological Macromolecules. 2022,194,233-245
28. Real-time imaging of acute alcoholic liver injury in vivo via a robust viscosity probe with aggregation-induced emission nature. Sensors and Actuators: B. Chemical. 2022,355,131285
29. NIR-II imaging-guided diagnosis and evaluation of the therapeutic effect on acute alcoholic liver injury via a nanoprobe[J]. Analytical Methods, 2022, 14(19): 1847-1855.
30. Pectic polysaccharide from Smilax china L. ameliorated ulcerative colitis by inhibiting the galectin-3/NLRP3 inflammasome pathway. Carbohydrate Polymers. 2022,277,118864
31. Oral absorption characteristics and mechanisms of a pectin-type polysaccharide fromSmilax china L.across the intestinal epithelium.Carbohydrate Polymers. 2021.270.118383
32. Lentinan inhibited colon cancer growth by inducing endoplasmic reticulum stress-mediated autophagic cell death and apoptosis. Carbohydrate Polymers. 2021,267,118154.
33. Comprehensive Landscape of Heparin Therapy for COVID-19. Carbohydrate Polymers.2021.117232.
34. Mechanism of Lentinan Intestinal Absorption: Clathrin-Mediated Endocytosis and Macropinocytosis. J Agric Food Chem 2021, 69(26): 7344-7352.
35. Molecular dynamics simulation of lentinan and its interaction with the innate receptor dectin-1. International Journal of Biological Macromolecules. 2021, 171, 527-538.
36. A multifunctional magnetic nanosystem based on “two strikes” effect for synergistic anticancer therapy in triple-negative breast cancer. Journal of Controlled Release. 2020, 322:401-415
37. Metabolic degradation of lentinan in liver mediated by CYP450 enzymes and epoxide hydrolase. Carbohydrate Polymers, 2020, 253.
38. Identification of the core active structure of a Dendrobium officinale polysaccharide and its protective effect against dextran sulfate sodium-induced colitis via alleviating gut microbiota dysbiosis. Food Research International, 2020, 137.
39. Angelica sinensis polysaccharide attenuates CCl4-induced liver fibrosis via the IL-22/STAT3 pathway. International Journal of Biological Macromolecules, 2020, 162.
40. The important role of polysaccharides from a traditional Chinese medicineLung Cleansing and Detoxifying Decoction against the COVID-19 pandemic. Carbohydrate Polymers. 2020, 240:116346.
41. Ultra-dispersed biomimetic nanoplatform fabricated by controlled etching agglomerated MnO2for enhanced photodynamic therapy and immune activation. Chemical Engineering Journal. 2020, 397:125478
42. Dendrobium officinale polysaccharide protected CCl4-induced liver fibrosis through intestinal homeostasis and the LPS-TLR4-NF-kB signaling pathway.Front Pharmacol. 2020, 11
43. Self-assembled Angelica sinensis polysaccharide nanoparticles with an instinctive liver-targeting ability as a drug carrier for acute alcoholic liver damage protection. International Journal of Pharmaceutics. 2020, 577, 118996
44. Prediction of tacrolimus dosage in the early period after heart transplantation: a population pharmacokinetic approach. Pharmacogenomics. 2019, 20(1):21-35.
45. A comparative study on the structures of Grifola frondosa polysaccharides obtained by different decolourization methods and their in vitro antioxidant activities. Food & Function. 2019,10,6720-6731
46. Purification, structural elucidation and anti-inflammatory activity in vitro of polysaccharides from Smilax china L. International Journal of Biological Macromolecules, 2019, 139, 233-243.
47. A “turn-on” near-infrared fluorescent probe with high sensitivity for detecting reduced glutathione based on red shift in vitro and in vivo. Dyes and Pigments, 2020, 172, 107837
48. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer.Carbohydrate Polymers,2019,219:143-154
49. Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: Pancreatic β-cell apoptosis inhibition. Journal of Functional Foods 54 (2019): 361-370
50. A sensitive and rapid radiolabelling method for the in vivo pharmacokinetic study of lentinan. Food Funct., 2018, 9, 3114-3125
51. Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. Journal of Functional Foods. January 2018, Pages 261-271
52. Pharmacokinetics, biodistribution and receptor mediated endocytosis of a natural Angelica sinensis polysaccharide. Artificial Cells, Nanomedicine, and Biotechnology. 2017 1:1-10.
53. Investigation of the transport and absorption of Angelica sinensis polysaccharide through gastrointestinal tract both in vitro and in vivo. Drug Delivery.2017 Nov;24(1):1360-1371.
54. Acidic Polysaccharide from Angelica sinensis Reverses Anemia of Chronic Disease Involving the Suppression of Inflammatory Hepcidin and NF-κB Activation,Oxidative Medicine and Cellular Longevit,Volume 2017,13 pages
55. Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dosestreptozotocininduced type 2 diabetic BALB/c mice. Food & Function.2016, 7, 4889-4897
56. Filicinic acid based meroterpenoids with anti-Epstein–Barr virus activities from Hypericum japonicum, Org. Lett. 2016, 18:2272−2275
57. (±)-Japonones A and B, two pairs of new enantiomers with anti-KSHV activities from Hypericum japonicum, Sci. Rep. 2016, 6, 27588. DOI: 10.1038/srep27588
58. (±)-Japonicols A–D, acylphloroglucinol-based meroterpenoid enantiomers with anti-KSHV activities from Hypericum japonicum, J. Nat. Prod. 2016, 79, 1322−1328
59. A new megastigmane sesquiterpenoid from Zanthoxylum schinifolium Sieb. et Zucc., Molecules 2016, 21, 383. DOI:10.3390/molecules21030383.
60. Two new bioactive α-pyrones from Hypericum japonicum, Molecules 2016, 21, 515.
61. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice, Sci. Rep. 2016,6:26229
62. Polysaccharide from Lentinus edodes combined with oxaliplatin possesses the synergy and attenuation effect in hepatocellular carcinoma, cancer letters. 2016,377:117-125
63. Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydrate Polymers. 2016
64. The effects of polysaccharides from the root of Angelica sinensis on tumor growth and iron metabolism in H22-bearing mice. Food & Function. 2016,7:1033-1039
65. Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice. International Immunopharmacology. 2016,31:140-148
66. Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway. Journal of functional foods. 2015,15:151-159.
67. Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation of glycogen levels and reduction of inflammatory factors. Food & Function. 2015,6:902-909
68. The action of JAK, SMAD and ERK signal pathways on hepcidin suppression by polysaccharides from Angelica sinensis in rats with iron deficiency anemia. Food & Function,2014,5:1381-1388.
69. Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus Edodes. Food Research International, 2014,62:223-232.
70. Alkali-Soluble Polysaccharide, Isolated from Lentinus edodes, Induces Apoptosis and G2/M Cell Cycle Arrest in H22Cells Through Microtubule Depolymerization. Phytotherapy Research,2014,12:1837-1845
71. Structure and inducing tumor cell apoptosis activity of polysaccharide isolated from Lentinus edodes. Journal of agricultural and food chemistry, 2013,61(41):9849-9858.
72. Polysaccharide Isolated from Angelica sinensis Inhibits Hepcidin Expression in Rats with Iron Deficiency Anemia. Journal Of Medical Food, 2012,15 (10):923–929.
73. Study to establish the role of JAK2 and SMAD1/5/8 pathways in the inhibition of hepcidin by polysaccharides from Angelica sinensis. Journal of Ethnopharmacology, 2012, 144(10):433-440
74. Inhibitory effect of polysaccharides isolated from Angelica sinensis on hepcidin expression. Journal of Ethnopharmacology, 2011, 134(3):944-948
75. A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo, 2011,49(12):1298-1305
76. Structure,Chain comformation and antitumor activity of a novel polysaccharide from Lentinus edodes. Fitoterapia, 2010, 81(8):1163-1170
三、获奖情况:
1993年、1998年获院先进工作者称号;
1997年、1998年连续两年考核优秀;
2003-2010年每年获华中科技大学优秀党员;
2006年获湖北省科技进步二等奖(第三负责人);
2010年获湖北省科技进步二等奖(第二负责人);
2012年获全国医药卫生系统创先争优活动先进个人
2015年获武汉市卫生计生系统创建全国文明城市先进个人
2016年获湖北省卫生计生系统加强履职尽责工作先进个人
2016年获湖北省科技进步一等奖
2017年获中国研究型医院学会“中国医院杰出领导者奖”
2017年获中国卫生计生思想政治工作促进会城市分会“优秀党务工作者”
2017年获华中科技大学“优秀科技成果奖”
2018年获评湖北省政府专项津贴人员
2018年获中国卫生计生思想政治工作促进会城市分会“有特殊贡献先进个人”
2020年获中国药学会最美科技工作者
2020年在“最具领导力中国医院领导者”评选中获“抗疫特别贡献奖”、“卓越贡献奖”
2021年获国务院政府特殊津贴
2021年获湖北省科技进步一等奖
2021年获吴阶平医药创新奖
2023年获第二十三届吴阶平-保罗杨森医学药学奖
四、出版书籍
代表性教材与专著:
1. 《临床药物手册第11版(翻译版)》张玉,主译,出版单位:人民卫生出版社,出版年份:2007年
2. 《抗凝治疗医护指南(翻译版)》张玉,主审,出版单位:人民卫生出版社,出版年份:2012年
3. 《战“疫情”一线——方舱医院药师工作手册》张玉,主编,出版单位:湖北科学技术出版社,出版年份:2020年
4. 《The clinical diagnosis and treatment for new coronavirus pneumonia》张玉,主编,出版单位:Springer,出版年份:2020年
5. 《医院药学》张玉,主编,出版单位:人民卫生出版社,出版年份:2021年
6. 《医院药学习题集》张玉,主编,出版单位:人民卫生出版社,出版年份:2021年
7. 《临床药学》张玉,副主编,出版单位:人民卫生出版社,出版年份:2021年
8. 《临床药学习题集》张玉,副主编,出版单位:人民卫生出版社,出版年份:2021年
9. 《药物毒理学》张玉,总主编,出版单位:科学出版社,出版年份:2024年
10. 《药物不良反应与药物警戒》张玉,总主编,出版单位:科学出版社,出版年份:2024年
11. 《临床药理学》张玉,总主编,出版单位:科学出版社,出版年份:2024年
联系方式:027-85726399 E-mails: wkpzcq@163.com
通讯地址:华中科技大学同济医学院附属协和医院 邮政编码 430022